Chapter 8-2



Holes

The properties of vacant orbitals in an otherwise filled band are important
in semiconductor physics and in solid state electronics. Vacant orbitals in a
band are commonly called| holes,|and without holes there would be no transis-
tors. A hole acts in applied electric and magnetic fields as if it has a positive
charge +e. The reason is given in five steps in the boxes that follow.




1. k], = _ke . (17)

The total wavevector of the electrons in a filled band is zero: =k = 0,

where the sum is over all states in a Brillouin zone. This result follows
from the geometrical symmetry of the Brillouin zone: every fundamental
lattice type has symmetry under the inversion operation r— —r about
any lattice point; it follows that the Brillouin zone of the lattice alsa has
inversion symmetry. If the band is filled all pairs of orbitals k and —k are
filled, and the total wavevector is zero.

If an electron is missing from an orbital of wavevector k,, the total
wavevector of the system is —k, and is attributed to the hole. This result
is surprising: the electron is missing from k, and the position of the hole
is usually indicated graphically as situated at k,, as in Fig. 7. But the true
wavevector k;, of the hole is —k,, which is the wavevector of the point G

if the hole is at E. The wavevector —k, enters into selection rules for

photon absorption.

The hole is an alternate description of a band with one missing elec-
tron, and we either say that the hole has wavevector —k, or that the band
with one missing electron has total wavevector —k,.




Conduction band

Figure 7 Absorption of a photon of energy fiw and negligible wavevector takes an electron from
E in the filled valence band to Q in the conduction band. If k, was the wavevector of the electron
at E, it becomes the wavevector of the electron at Q. The total wavevector of the valence band
after the absorption is —k,, and this is the wavevector we must ascribe to the hole if we describe
the valence band as occupied by one hole. Thus k;, = —k,; the wavevector of the hole is the same
as the wavevector of the electron which remains at G. For the entire system the total wavevector
after the absorption of the photon is k, + k;, = 0, so that the total wavevector is unchanged by the
absorption of the photon and the creation of a free electron and free hole.




2.

€h<kh) = _Ee(ke) :

(18)

Here the zero of energy of the valence band is at the top of the band.
The lower in the band the missing electron lies, the higher the energy of
the system. The energy of the hole is opposite in sign to the energy of
the missing electron, because it takes more work to remove an electron

from a low orbital than from a high orbital. Thus if the band is symmet-
ric,' €,(k,) = €,(—k,) = —€,(—k,)= —¢€,(k;). We construct in Fig. 8 a
band scheme to represent the properties of a hole. This hole band is a
helpful representation because it appears right side up.

3.

Vi ¥

dE(k,)/dk, = dE(K,)/dk,

The velocity of the hole is equal to the velocity of the missing electron.

From Fig. 8 we see that Ve, (k;,) = Ve,(k,), so that v, (k;,) = v,(k,).

'Bands are always symmetric under the inversion k — —k if the spin-orbit interaction is
neglected. Even with spin-orbit interaction, bands are always symmetric if the crystal structure
permits the inversion operation. Without a center of symmetry, but with spin-orbit interaction, the
bands are symmetric if we compare subbands for which the spin direction is reversed: e(k, Ty e

e(—k, ). See QTS, Chapter 9.




Hole band constructed
with kj, = -k, and
e'h(kh) = _Ee(ke)’ to

simulate dynamics

of a hole.

Figure 8 The upper half of the figure shows|the hole band|that simulates the dynamics of a hole,

constructed by_inversion of the valence band in the origin. The wavevector and energy of the hol

are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va-
lence band. We do not show the disposition of the electron removed from the valence band at k,.




s = —m, . || 02E(K,)/dk.2 = - dE2(K,)/dK 2

We show below that the effective mass is inversely proportional to the
curvature d%e/dk?, and for the hole band this has the opposite sign to that
for an electron in the valence band. Near the top of the valence band m,
is negative, so that m, is positive.

dk;,
5. ﬁd—t’=e(E+—:cl-vh><B) : (21)
This comes from the equation of motion Vh - Ve
k
(CGS) ﬁcilte = —¢(E +%ve X B) (22)

that applies to the missing electron when we substitute —k;, for k, and v;,
for v,. The equation of motion for a hole is that of a particle of
positive charge e. The positive charge is consistent with the electric

current carried by the valence band of Fig. 9: the current is carried by
e unpaired electrod in the orbital G:

| §= (oM@ =l —v(E)] = ev(m) (23)

which is just the current of a positive charge moving with the velocity as-
cribed tohe missing electron at EDThe current is shown in Fig. 10.




electron ¢= -k, hole ¢= -k,
€

(a) (b) (c)

Figure 9 (a) Att = 0 all states are filled except F at the top of the band; the velocity v, is zero at F
because de/dk, = 0. (b) An electric field E, is applied in the +x direction. The force on the elec-
trons is in the —k, direction and all electrons make transitions together in the —k, direction, mov-
ing the hole to the state E. (c) After a further interval the electrons move farther along in k space
and the hole is now at D.



From Ch. 6,
drift velocity, v=gt E/m

Ve = - Uy
‘]e: ‘]h

Figure 10 Motion of electrons in the conduction band and
holes in the valence band in the electric field E. The hole

and electron drift velocities are in appasite directions_bnt their

electric currents are in the same direction. the direction of the
electric field.




Effective Mass

When we look at the energy-wavevector relation € = (A*2m)k* for free
electrons, we see that the coefficient of k> determines the curvature of € versus
k. Turned about, we can say that 1/m,the reciprocal mass, determines the cur-
vature. For electrons in a band there can be regions of unusually high curva-

ture near the band gap at the zone boundary, as we see from the solutions in
Chapter 7 of the wave equation near the zone boundary. If the energy gap is

small in comparison with the free electron energy A at the boundary, the cur-
vature is enhanced by the factor A/E,. ) ~100, Ch.7,eq. 52

In semiconductors the band width, which is like the free electron energy,
is of the order of 20 eV, while the band gap is of the order of 0.2 to 2 eV. Thus
the reciprocal mass is enhanced by a factor 10 to 100, and the effective mass is
reduced to 0.1-0.01 of the free electron mass. These values apply near the
band gap; as we go away from the gap the curvatures and the masses are likely
to approach those of free electrons. E. =2U

To summarize the solutions of Chapter 7 for U positive, an electron near
the lower edge of the second band has an energy that may be written as

e(K) = €, + (£°2m )K° ; m,/m = 1/[(2A/U)—1] . | (24)

from Ch. 7, eq. 52 ‘me oc U o Eg




Here K is the wavevector measured from the zone boundary, and m, denotes
the effective mass of the electron near the edge of the second band. An elec-
tron near the top of the first band has the energy

e(K)=¢€,— (B22m)K2 ; | my/m = 1/[(2A/U) + 1] | (25)

The curvature and hence the mass will be negative near the top of the first
band, but we have introduced a minus sign into (25) in order that the symbol
my, for the hole mass will have a positive value—see (20) above.

The crystal does not weigh any less if the effective mass of a carrier is less
than the free electron mass, nor is Newton’s second law violated for the crystal
taken as a whole, ions plus carriers. The important point is that an electron in a
periodic potential is accelerated relative to the lattice in an applied electric or
magnetic tield as if the mass of the electron were equal to an_effective mass

which we now define.




We ditterentiate the result (1) for the group velocity to obtain

dv 2 2
“e_p-1 d€ _poi(dedk)
Ll v (dk2 dt) 20)
We know from (5) that dk/dt = F/#, whence
dv 2 2 do
“e_[lde ; __h g
dt (ﬁ2 dkz)F B B T oL

If we identify %%/(d’€¢/dk®) as a mass, then (27) assumes the form of Newton’s
second law. We define the effective mass m* by

F=ma

1 1d
I Ty | 28

It is easy to generalize this to take account of an anisotropic electron en-
ergy surface, as for electrons in Si or Ge. We introduce the components of the
reciprocal effective mass tensor

1Y 1 @ | | 4% .{1
(m*>#v_ 72 dk”, dk, ST (m*)#vFv 5 (29)

where w, v are Cartesian coordinates.




Effective Masses in Semiconductors

In many semiconductors it has been possible to determine by cyclotron
resonance the effective masses of carriers in the conduction and valence bands
near the band edges. The determination of the energy surface is equivalent to
a determination of the effective mass tensor (29). Cyclotron resonance in a
semiconductor is carried out with centimeter wave or millimeter wave radia-
tion at low carrier concentration.

The current carriers are accelerated in helical orbits about the axis of a
static magnetic field. The angular rotation frequency w, is

(CGS) | w, = i

m*c

where m* is the appropriate cyclotron effective mass. Resonant absorption of
energy from an rf electric field perpendicular to the static magnetic field
(Fig. 12) occurs when the rf frequency is equal to the cyclotron frequency.
Holes and electrons rotate in opposite senses in a magnetic field.




We consider the experiment for m*/m = 0.1. At f, = 24 GHz, or w, =
1.5 X 10" s7!, we have B = 860 G at resonance. The line width is determined
by the collision relaxation time 7, and to obtain a distinctive resonance it is
necessary that w7 = 1. The mean free path must be long enough to permit the
average carrier to get one radian around a circle between collisions. The re-
quirements are met with the use of higher frequency radiation and higher

magnetic fields, with high purity crystals in liquid helium.
T 4/p
1/, << 7 by using a larger B, purer crystal

a)C >> w’l’

Figure 12 Arrangement of fields in
a cyclotron resonance experiment in
a semiconductor. The sense of the
circulation is opposite for electrons
and holes.




CYCLOTRON RESONANCE Aschroft Mermin, Ch. 28

The effective masses discussed above are measured by the technique of cyclotron
resonance. Consider an electron close enough to the bottom of the conduction band
(or top of the valence band) for the quadratic expansion (28.2) to be valid. In the

presence of a magnetic field H the semiclassical equations of motion (12.32) and
(12.33) imply that the velocity v(k) obeys the single set of equations

M- = F-vx H. (28.4)

Ina constant uniform field (taken along the z-axis) it is not difficult to show (Problem 1)
that (28.4) has an oscillatory solution

v = Revge ™, (28.5)
provided that
eH
0= e (28.6)

where m*, the “cyclotron effective mass,” is given by

det M \'/?
* —
m ( M. ) : (28.7)




This result can also be written in terms of the eigenvalues and principal axes of the
mass tensor as (Problem 1):

mim,ms
mT = — = = : 28.8
\/leml + Hy*m, + Hiy%m, 5:0)

where the H; are the components along the three principal axes of a unit vector
parallel to the field.

Note that the cyclotron frequency depends, for a given ellipsoid, on the orientation
of the magnetic field with respect to that ellipsoid, but not on the initial wave vector
or energy of the electron. Thus for a given orientation of the crystal with respect to
the field, all electrons in a given ellipsoidal pocket of conduction band electrons
(and, by the same token, all holes in a given ellipsoidal pocket of valence band holes)
precess at a frequency entirely determined by the effective mass tensor describing
that pocket. There will therefore be a small number of distinct cyclotron frequencies.
By noting how these resonant frequencies shift as the orientation of the magnetic
field is varied, one can extract from (28.8) the kind of information we quoted above.

For a given @, m* varies with H




To observe cyclotron resonance it is essential that the cyclotron frequency (28.6)
be larger than or comparable to the collision frequency. As in the case of metals,
this generally requires working with very pure samples at very low temperatures,
to reduce both impurity scattering and phonon scattering to a minimum. Under
such conditions the electrical conductivity of a semiconductor will be so small that
(in contrast to the case of a metal (page 278)) the driving electromagnetic field can
penetrate far enough into the sample to excite the resonance without any difficulties
associated with a skin depth. On the other hand, under such conditions of low
temperatures and purity the number of carriers available in thermal equilibrium
to participate in the resonance may well be so small that carriers will have to be
created by other means—such as photoexcitation. Some typical cyclotron resonance
data are shown in Figure 28.9.
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Typical cyclotron resonance signals in (a) germanium and (b) silicon. The field lies in a (110)
plane and makes an angle with the [001] axis of 60° (Ge) and 30° (Si). (From G. Dresselhaus et al.,
Phys. Rev. 98, 368 (1955).)




In direct-gap semiconductors with band edges at the center of the Bril-
louin zone, the bands have the structure shown in Fig. 13. The conduction
band edge is spherical with the effective mass m,

¢, = E, + 5%¥2m, , (31)

referred to the valence band edge. The valence bands are characteristically
threefold near the edge, with the heavy hole hh and light hole [h bands degen-
erate at the center, and a band soh split off by the spin-orbit splitting A:

Ev(hh) = "‘ﬁ2k2/2mhh > EU(lh) = —ﬁ2k2/2m,h s
€,(soh) = —A — #%k*/2m,,, .

(32)

Values of the mass parameters are given in Table 2. The forms (32) are only
approximate, because even close to k = 0 the heavy and light hole bands are
not spherical—see the discussion below for Ge and Si.

The perturbation theory of band edges (Problem 9.8) suggests that the
electron effective mass should be proportional to the band gap, approximately,

for a direct gap crystal. We use Tables 1 and 2 to find the fairly constant values
m,/(mE,) = 0.063, 0.060, and 0.051 in (eV)~! for the series InSb, InAs, and
InP, in agreement with this suggestion.

M, oc E;  see Ch. 8, eq. 24, 25
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Note in general
m*h > m*e

Figure 13 Simplified view of the
band edge structure of a direct-gap
semiconductor.



Table 2 Effective masses of electrons and holes in direct-gap semiconductors

Electron Heavy hole Light hole Split-off hole Spin-orbit
Crystal m,/m my/m my,/m Myop/M 7 A, eV
S e G 0 o R e el Y 3 ot R P S L D ey WL RN S b
InSb 0.015 0.39 0.021 (0.11) 0.82
InAs 0.026 0.41 0.025 0.08 0.43
InP 0.073 0.4 (0.078) (0.15) 0.11
GaSh 0.047 0.3 0.06 (0.14) 0.80
GaAs 0.066 0.5 0.082 0.17 0.34
Cu,O 0.99 —_ 0.58 0.69 0.13

\4 \4

E, larger m* larger

m*oc E,
m*/(m E;) oc ~0.06










Physical Interpretation of the Effective Mass

How can an electron of mass m when put into a crystal respond to applied
fields as if the mass were m*? It is helpful to think of the process of Bragg re-
flection of electron waves in a lattice. Consider the weak interaction approxi-
mation treated in Chapter 7. Near the bottom of the lower band the orbital is
represented quite adequately by a plane wave exp(ikx) with momentum #k;
the wave component expli(k — G)x] with momentum #(k—G) is small and
increases only slowly as k is increased, and in this region m* = m. An increase
in the reflected component expli(k — G)x] as k is increased represents mo-
mentum transfer to the electron from the lattice.

Near the boundary the reflected component is quite large; at the bound-
ary it becomes equal in amplitude to the forward component, at which point
the eigenfunctions are standing waves, rather than running waves. Here the
momentum component #(— > G) cancels the momentum component iz G).



A single electron in an energy band may have positive or negative effective
mass: the states of positive effective mass occur near the bottom of a band be-
cause positive effective mass means that the band has upward curvature
(d%e/dk? is positive). States of negative effective mass occur near the top of the

band. A negative effective mass means that on going from state k to state
k + Ak, the momentum transfer to the lattice from the electron is larger than
the momentum transfer from the applied force to the electron. Although k is
increased by Ak by the applied electric field, the approach to Bragg reflection
can give an overall decrease in the forward momentum of the electron; when
this happens the effective mass is negative (Fig. 11).

As we proceed in the second band away from the boundary, the amplitude
of expli(k — G)x] decreases rapidly and m* assumes a small positive value.
Here the increase in electron velocity resulting from a given external impulse
is larger than that which a free electron would experience. The lattice makes
up the difference through the reduced recoil it experiences when the ampli-
tude of exp[i(k — G)x] is diminished.
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Figure 11 Explanation of negative effective masses which occur near, but below, a Brillouin zone
boundary. In (a) the energy of the electron beam incident on a thin crystal is slightly too low to sat-
isfy the condition for Bragg reflection and the beam is transmitted through the crystal. The appli-
cation of a small voltage across the grid may, as in (b), cause the Bragg condition to be satisfied,
and the electron beam will then be reflected from the appropriate set of crystal planes.

If the energy in a band depends only slightly on k, then the effective mass
will be very large. That is, m*/m > 1 when d’¢/dk® is very small. The tight-
binding approximation discussed in Chapter 9 gives quick insight into the for-
mation of narrow bands. If the wavefunctions centered on neighboring atoms

overlap very little, then the overlap integral is small; the width of the band
narrow, and the effective mass large. The overlap of wavefunctions centered

on neighboring atoms is small for the inner or core electrons. The 4f electrons
of the rare earth metals, for example, overlap very little.



